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Abstract--Analytical solutions for fully developed natural convection in open-ended vertical concentric 
porous annuli are presented. Four fundamental boundary conditions have been investigated and the 
corresponding fundamental solutions are obtained. These four fundamental boundary conditions are 
obtained by combining each of the two conditions of having one boundary maintained at uniform heat 
flux or at uniform wall temperature with each of the conditions that the opposite boundary is kept 
isothermal at the inlet fluid temperature, or adiabatic. Expressions for the flow and heat transfer parameters 
are given for each case. These fundamental solutions may be used to obtain solutions satisfying more 

general thermal boundary conditions. 

INTRODUCTION 

An understanding of convective heat transfer in 
porous annuli is essential for its numerous appli- 
cations in packed-bed catalytic reactors, geophysics, 
thermal insulation, design of regenerative heat 
exchangers, geological disposal of high-level nuclear 
waste, petroleum resources, and many other uses. 

Free and mixed convection problems in a vertical 
porous annulus has been extensively studied by Prasad 
and Kulacki [1], Prasad et al. [2], Clarksean et al. [3], 
Reda [4], Muralidhar [5] and Choi and Kulacki [6, 
7]. The above studies use numerical or experimental 
techniques to investigate the thermal behaviour of the 
porous annulus. Analytical solutions for the problem 
of natural convection in porous annulus is only poss- 
ible when the flow is fully developed. Fully developed 
free convection flows are obtained when the inertia 
forces vanish and a balance is attained between the 
pressure, gravitational and Darcian forces on the one 
hand and the viscous forces on the other hand. The 
non-Darcian inertial effects which account for the 
additional pressure drop resulting from inter-pore 
mixing may be neglected for pure free convection situ- 
ations. The study of fully developed flows gives the 
limiting conditions for developing flows and provides 
an analytical check on numerical solutions. In 
addition, fully developed behaviour is attained in a 
very short distance from the entrance of porous 
channels. 

Nevertheless, to the author's knowledge, only one 
analytical study [8] is available in the literature dealing 
with fully developed free convection flows in vertical 
annuli. Parang and Keyhani [8] have obtained closed- 
form solutions for the special case of fully developed 
flow, where the inner and outer walls are heated by 
uniform but unequal heat fluxes. Solutions for the 
same case in geometries other than the annular one 

may be found in the literature [9]. The limiting 
case of fully developed natural convection in non- 
porous annuli, where the porosity approaches zero, is 
solved analytically for steady and transient cases by 
El-Shaarawi and A1-Nimr [10] and A1-Nimr [11]. 

The lack of analytical solutions for fully developed 
laminar natural convection in vertical concentric 
porous annuli, with different fundamental com- 
binations of isothermal and isoflux thermal boundary 
conditions, motivated the present work. The purpose 
of this paper is to present, in closed forms, fully 
developed free convection solutions, corresponding to 
four fundamental thermal boundary conditions, in 
vertical concentric porous annuli. 

GOVERNING EQUATIONS AND BOUNDARY 
CONDITIONS 

Consider steady fully developed free convection 
flow inside an open-ended vertical concentric porous 
annulus of a finite length (/), immersed in a stagnant 
fluid of infinite extent maintained at a constant tem- 
perature to. Figure 1 shows the physical situation in 
which at least one of the channel walls is heated or 
cooled either isothermally or at a constant wall heat 
flux, so that its temperature (i.e. temperature of the 
inner surface of the outer cylinder or that of the outer 
surface of the inner cylinder) is different from the 
ambient temperature to. Due to fully developed flow 
assumptions, the fluid enters the part under con- 
sideration of the porous annular passage with an axial 
velocity profile which remains invariant in the entire 
channel (i.e. ~u/~z = 0). The fluid is assumed to be 
Newtonian, it enters the channel at the ambient tem- 
perature to, and both the fluid and solid matrix are 
assumed to be in thermal equilibrium and to have 
constant physical properties. Also, the fluid obeys the 
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NOMENCLATURE 

a local heat transfer coefficient based on p' 
the area of heat transfer surface P0 
q / ( tw-  to) = + ke(c~t/(?r)w/(tw- to), 
minus and plus signs apply, p~ 
respectively, for heating and cooling at P 
the inner boundary and vice versa at the 
outer boundary Pr~, 
average heat transfer coefficient over q 
the annulus height, based on the 
average temperature 

A, constants of integration, where i = 1 
and 2, of the heat transfer 
boundary, ~ adz/l r 

b annular gap width, r2 - r~ r~ 
Bi constants of integration, where i = 1 r2 

and 2 R 
% specific heat of fluid at constant t 

pressure tm 
C~ constants of integration where i = 1, 

2, 3 and 4 to 
d~ constants related to C, where i = 1,2, 3 tw 

and 4 T 
Da Darcy number, K/er22 
D equivalent (hydraulic) diameter of 

annulus, 2b 
Dw diameter of heat transfer boundary 
E~ constants where i = 1 and 2 
f volumetric flow rate, ~ 2~ru dr 
F dimensionless volumetric flow rate, Tm 

f / (~#Gr*)  
g gravitational body force per unit mass 
Gr Grashof number, ~-9fl( tw- to)D3~7 2 in 

the case of an isothermal boundary, or 
-T-g[~qD4/2k~7 2 in the case of uniform u 
heat flux (UHF) heat transfer boundary, u0 
the plus and minus signs apply to 
upward (heating) and downward U 
(cooling) flows, respectively. Thus Gr 
is a positive number in both cases z 

Gr* modified Grashof number, D Gr/l Z 
I0 modified Bessel function of the first 

kind of order zero 
1~ modified Bessel function of the first 

kind of order one 
k~ effective thermal conductivity of 

porous medium ct 
K permeability of the porous medium ~ 
K0 modified Bessel function of the second /~ 

kind of order zero 
K~ modified Bessel function of the second 7 

kind of order one c 
l height of annulus O~ 
L dimensionless height of annulus, 1/Gr* 
N annulus radius ratio, rL/r 2 ). 
Nu local Nusselt number, lalO/ke It 
Nu average Nusselt number, ~10 Nu dz/l  p 
p pressure of fluid inside the channel at 

any cross-section P0 

pressure defect at any point, p -p~  
pressure of fluid at the channel 
entrance 
hydrostatic pressure, pogz 
dimensionless pressure defect at any 
point, p'r4 /po1272 Gr .2 
effective Prandtl number, ?'/~e 
heat flux at the heat transfer surface, 
q = -T-ke(Ot/(?r)~, where the minus and 
plus signs are, respectively, for heating 
and cooling in case I ; these signs 
should be reversed in case O 
radial coordinate 
inner radius of annulus 
outer radius of annulus 
dimensionless radial coordinate, r/r2 
temperature at any point 
mixing cup temperature over any cross 
section, ~;-', rut dr/~r~ ru dr 
temperature at the annulus entrance 
temperature of heat transfer boundary 
dimensionless temperature, 
( t -  to)/(tw- to) in the case of an 
isothermal heat transfer boundary, 
and ( t -  to)/(qD/2ke) for UHF boundary, 
and thus it is positive for both heating 
(upward) and cooling (downward) 
flows 
dimensionless mixing cup 
temperature, (tin--to)/(t,,.--to) in the 
case of an isothermal heat transfer 
boundary, and (tin--to)/(qD/2ke) for 
UHF boundary 
volume-averaged axial velocity 
volume-averaged axial velocity at the 
entrance of the annulus 
dimensionless volume averaged axial 
velocity, ur~/(lvGr*) 
axial coordinate 
dimensionless axial coordinate, 
z/(lGr*). 

Greek symbols 
parameter defined in equation (5) 
effective thermal diffusivity, ke/Epocp 
volumetric coefficient of thermal 
expansion 
kinematic viscosity of fluid, It/Po 
porosity of the medium 
dimensionless temperature of heat 
trfinsfer boundary 
parameter defined in equation (9) 
dynamic viscosity of fluid 
fluid density at temperature t, 
po(l -- fl( T--  To)) 
fluid density at t o. 
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Fig. 1. Schematic diagram. 

Boussinesq approximation according to which its den- 
sity is constant, except in the gravitational term of the 
vertical momentum equation. It is assumed that the 
flow has axial symmetry and it is assumed that both 
viscous dissipation and internal heat generation are 
absent. 

Under the above-mentioned assumptions and using 
the dimensionless parameters given in the Nomencla- 
ture, the equations of continuity, motion and energy 
reduce to the following two simultaneous non-dimen- 
sional equations : 

dP 1 d //FRdU(R)q 1 
dZ + R ~ L  ~ J - D ~ a U ( R )  

T( R, Z)  
+ - o  (1) 

16(1 --N) 4 

~T 1 0 [  ~T 1 U(R)Pre t~Z - R t?R R ~ . (2) 

Four boundary conditions are therefore needed to 
obtain a solution for the above two second-order 
differential equations. The two conditions related to 
U are 

U(l) = U(N) = 0. (3) 

On the other hand, there are many possible thermal 
boundary conditions applicable to the annular con- 
figuration. In the present paper, the non-dimensional 
parameters used in the formulation of the problem 
are chosen to suit annuli having their two boundaries 
at two different heat fluxes (qj and q2), o r  at two 

different uniform temperatures (t~ and t2), or annuli 
under one of four fundamental boundary conditions. 
These four fundamental boundary conditions are 
obtained by combining each of the two conditions 
of having one boundary maintained at uniform wall 
temperature or at specified heat flux, with each of the 
conditions that the opposite boundary is kept iso- 
thermal at the inlet fluid temperature (to) or adiabatic 
Ot/~r = O. 

With the two boundaries of an annulus maintained 
at UHF (uniform heat flux) conditions, if q~ refers to 
the larger heat flux, then ql will be at the hotter wall 
in case of heating and at the cooler wall in case of 
cooling. Thus, the value of rq (ratio of the heat fluxes 
at the two boundaries, qz/qO may vary from - 1 to 1. 
Similarly, when the two boundaries of an annulus are 
kept isothermal, tl refers to the wall which has the 
larger temperature difference from to. Thus, t~ is the 
temperature of the hotter wall in case of heating the 
two boundaries and of the cooler wall in case of cool- 
ing both boundaries. Therefore, the wall temperature 
difference ratio rT [ =  (t2--to)/(tl--to)] may, in this 
case of UWT boundary conditions, also vary from 
- l t o  1. 

From the previous discussion it may be seen that 
there are many thermal boundary conditions appli- 
cable to the annulus geometry. However, under cer- 
tain conditions, the energy equation (2) becomes lin- 
ear and homogeneous in T (e.g. when OT/ctZ is 
constant), and then any linear combination of solu- 
tions will be a solution. It may then be possible to 
develop certain special or fundamental solutions to 



4 M.A. AL-N1MR 

this equation satisfying particular or specific bound- 
ary conditions, which can be combined to satisfy any 
other boundary conditions. This method is known 
as the method of superposition. Reynolds et al. [12] 
defined four fundamental  boundary  conditions for the 
annular  geometry, which produce four fundamental  
solutions to the energy equation (2) when it becomes 
linear. For  the sake of completeness, these fun- 
damental solutions are stated hereinafter. 

(1) Fundamenta l  solutions of the first kind, which 
satisfy the boundary conditions of a temperature step 
change at one wall, the opposite wall being kept iso- 
thermal at the inlet fluid temperature. Using the pre- 
sent notation, this corresponds to T = 1 at one wall 
and T = 0 at the opposite wall (i.e. rv = 0). 

(2) Fundamenta l  solutions of the second kind, 
which satisfy the boundary conditions of a step change 
in heat flux at one wall, the opposite wall being adia- 
batic. Using the present notation, this corresponds to 
c'~T/dR = 1/(1 - N) at the inner wall and dT/i?R = 0 
at the outer wall, or dT/dR = 0 at the inner wall and 
dT/dR = 1/(1 - N )  at the outer wall. 

(3) Fundamenta l  solutions of the third kind which 
satisfy the boundary conditions of a temperature step 
change, at one wall, the opposite wall being adiabatic. 
This corresponds to T = 1 at one wall and dT/dR = 0 
at the opposite wall. 

(4) Fundamenta l  solutions of the fourth kind, 
where a step change in heat flux at one wall is applied, 
while the opposite wall is kept isothermal at the 
inlet fluid temperature. This corresponds to 
dT/dR = - 1/(1 - N )  at the inner wall, while T = 0 at 
the outer wall or T =  0 at the inner wall, and 
dT/c~R = 1/(1 --N) at the outer wall. 

With any of the above-mentioned boundary con- 
ditions, the boundary opposite to that maintained 
adiabatic (i.e. dT/~,R = 0) ora t  t0 (i.e. T = 0) is termed 
the heat-transfer boundary  (even though there is 
transfer of heat through a boundary  maintained at 
T = 0). For  each of the above fundamental  solutions, 
two cases are considered, namely, case I, in which the 
heat transfer boundary  is at the inner wall, and case 
O, in which the heat transfer boundary  is at the outer 
wall. The aim of the present paper is to obtain the 
above-mentioned four fundamental  solutions. 

GENERAL ANALYSIS 

Substituting T from equation (1) into equation (2), 
we obtain 

d2p d4U 2 d3U ( 1 ; )  d2U 
Pr°ua77 + a 7  + d e  - gaa + dR: 

+ 3 DaR ~ -  = 0. (4) 

A solution of equation (4) in the form U = U(R) is 
only possible if 

dep 
- ~ ( 5 )  

dZ 2 

where ~ is constant. From equation (1) one may 
obtain 

?T 
. . . . .  167(1 N) 4 (6) 
?Z  

which means that, for a given R in a given annulus, 
the dimensionless temperature T varies linearly with 
the axial distance Z. This implies that the assumption 
of a hydrodynamically fully developed free convection 
flow should necessarily mean that the flow is also 
thermally fully developed, regardless of the value of 
the effective Prandtl  number  (Pr~). In other words, 
for free convection flows in the vertical annulus, the 
thermal development length is shorter than or at most 
equal to that of the hydrodynamic development 
length, irrespective of the value of the effective Prandtl 
number. However, in pure forced convection flows, 
such a result is only obtained ifPr~<~ I. 

Integrating equation (5) twice and applying the con- 
ditions that P = 0 at both inlet and exit (i.e. at Z - 0 
and L), gives 

P = 0.5c~Z(Z- L). (7) 

Substituting equation (5) into equation (4) yields 

d4U 2 d3U ( 1 ~22) deU 
dR 4 + R dR 3 ~ + dR 2 

; 1 \ dU 
+ 3 D a R )  d R  -}- ).4 ~.j = 0 (8) 

where 

2 4 -- ~Pr~. (9) 

Substituting P from equation (7) into equation (1) 
gives 

I d~RdU(R)] 
~ ( Z - 0 . 5 L ) -  ~ dRl_ dR J 

1 T(R ,Z)  
+ ~ U ( R ) -  (10) 

16(1 - N )  4 / ) a  

The governing equations (8)-(10) can be simplified if 
one of the two annulus boundaries is kept isothermal. 
In order to satisfy this boundary condition, T must, 
in this particular case, be independent of Z. Thus, it 
is concluded that ~ (and hence 2) must, in such a 
case, equal zero. Therefore, equations (5)-(8) and (10) 
reduce, in this case, to the following equations, respec- 
tively : 
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d4U 2 d3U 
+ 

dR 4 R dR 3 

d2p 
~ - -  - - 0  

dZ 2 

0T 
- 0  

(?Z 

P = 0  

(, 
Da + dR 2 

(11) 

(12) 

(13) 

1 1 ) d U  
~- R 3 DaR ~ -  = 0 (14) 

T - - 16(1R--N)4 dRd [ R ~ - J d  U(R)-] + 16(IDa-N)4 U(R). 

(15) 

Equation (12) states that, in a case with an isothermal 
boundary, the fully developed temperature profile is 
constant or at most a function of the radial coordinate 
only. On the other hand, equation (13) states that the 
fully developed pressure inside an open-ended annulus 
of an isothermal boundary is equal to the hydrostatic 
pressure, at the same elevation, outside the annulus. 
This implies that, in such a fully developed case with 
an isothermal boundary, there would be no pressure 
drop due to fluid viscous or Darcian drag, since these 
are just offset by the buoyancy driving force. 

If the two governing equations (14) and (15) or 
their general forms (8) and (10) are solved for the 
velocity and temperature profiles (U and T), then the 
following useful parameters can be evaluated. 

The dimensionless volumetric flow rate (F) can be 
evaluated from the following equation : 

F =  2 IIRUdR. (16) 
JN 

Since for a fully developed flow U is a function of R 
only. it follows that the definite integral on the right- 
hand side of equation (16) and hence F are constants, 
regardless of the value of the axial coordinate Z, i.e. 
they are not related to the value of the annulus height. 
It can, however, be shown that, in cases with two 
U H F  boundaries, there exists a relation between this 
constant fully developed value of F and the thermal 
boundary conditions applied at the boundaries of an 
annulus. Integrating equation (2) with respect to R 
from R = N to 1, the following equation is obtained : 

/ c~T\ ( ~ T )  (" OT 
- =Pr¢ l  R U ~ d R .  (17) tR~t~),~, R ~  R=.,. .,.,. 

However, for a given annulus, equation (6) shows 
that, in cases with two UHF boundaries, c~T/?Z is 
constant, and hence it can be taken out of the above 
integral. Substituting for c?T/OZ from equation (6) in 
equation (17) and using the result in equation (16) 
gives 

\SR/R= , - N{,,fTR)R _ x] 
F = (18) 

824(1 - N )  4 

It may also be worth mentioning that, in a case with 
a UWT heat transfer boundary, equations (12) and 
(17) give the following result: 

(~)R= =N('h~T t (19, 
I \ g R / ~  = ,( 

Take into consideration that the rate of heat transfer 
per unit length from the inner and outer surfaces of 
an annulus are given, respectively, by 

/~ t \  
Q,. = T- 2~r,k~(i.;r), =, ' (20) 

QI. = +_27tr2k~ (21) 

Then, for a fundamental solution of the first kind (i.e. 
a case with two UWT boundaries), one may obtain 

[dT \  
e l i  = T-2r~k¢(t , , - lo)N~.~) , : ,  (22) 

(¢t Qio = +_2ukAt,,-to) \~,R/R ~ (23) 

The upper and lower (plus or minus) signs in the 
above expressions apply, respectively, for heating and 
cooling. Equations (19), (22) and (23) yield the fol- 
lowing conclusions. In an annulus with two UWT 
boundaries, or an annulus with a UWT boundary and 
an opposite UHF boundary, when fully developed 
conditions are achieved, the rate of heat transfer from 
one boundary should be equal and opposite to that 
from the other boundary (i.e. A~q~= --A~q:). This 
implies that, in such cases, the net rate of heat transfer 
to/from the fully developed fluid flow is zero. Thus, 
it is anticipated, in such cases, that the bulk fluid 
temperature would remain constant. However, in the 
special case with a UWT boundary (T = 1) and an 
opposite adiabatic boundary (?T/dR = 0, equation 
(19) shows that g;T/~')R at the UWT boundary must 
also vanish. Thus, in this special case, fully developed 
conditions are achieved when both ~3T/~'?R and ;~T/Z 
vanish, i.e. the temperature becomes uniform at the 
UWT boundary. 

Equation (18) confirms that the fully developed 
dimensionless volumetric flow rate is independent of 
the dimensionless channel height (L) and it depends 
on the thermal boundary conditions applied at the 
two annulus boundaries. This means that, when the 
channel becomes sufficiently high so that the flow 
reaches its state of full development, a further increase 
in the channel height would not produce any further 
increase in the sucked volumetric flow rate. When 
fully developed conditions are achieved, in a case with 
two UHF boundaries, an increase in the value of F 
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may be obtained by increasing the heat flux at the 
boundaries rather than the channel height L. 

The dimensionless inlet velocity U0 is given in terms 
of F by 

F 
Uo - 1 - N 2" (24) 

Therefore, U0 is similarly constant irrespective of the 
annulus height and is related, in cases with U H F  
boundaries, to the thermal boundary conditions by 
the following equation : 

7k .=,- \  
U0 = (25) 

824(1-N)~(1 + N )  

The dimensionless mixing cup temperature is given by 

NIRUTdR 

Tm (26) 

l R U d R  

To find the variation of Tin, in the fully developed flow 
region, with the dimensionless axial distance Z, the 
above equation is differentiated with respect to Z. 
Since U is independent of Z, this gives 

('l ~ T  

arm JN RU~dR 
- -  - ( 2 7 )  

a z  j"RUdRN 
which, on substituting for OT/OZ from equation (6) 
into the above equation, yields 

aTm 
- 1 6 ~ ( 1 - N )  4. ( 2 8 )  

0Z 

Integrating equation (28) with respect to Z between 
annulus entrance and exit, taking into consideration 
that Tm = 0 at Z = 0, results in 

Tm= 16~(1--N)4Z. (29) 

Using the dimensionless parameters given in the 
Nomenclature, the following expressions for the local 
Nusselt number can easily be obtained: for a UWT 
boundary 

f ~T\  
= +_ 2(1- (30) 

and for U H F  boundaries 

, 2 ( 1 - - N )  faT'~ 2 
N u =  ± ~ t ~ L = ~  (31) 

where the minus and plus signs apply respectively for 
cases I and O when there is heating, and vice versa 
when there is cooling. 

From equation (15) it can be seen that (#T/OR) is a 
function of R only, which is dependent on the fully 

developed axial velocity profile (U), i.e. it is inde- 
pendent of Z. Hence, for a case with a UWT bound- 
ary, equations (15) and (30) show that the fully 
developed local Nusselt number is constant. Conse- 
quently, the fully developed average Nusselt number 
is, in this case (UWT), independent of annulus height 
L. On the other hand, with the two boundaries at 
UHF,  equation (10) shows that the temperature varies 
linearly with Z. Hence, equations (10) and (31) show 
that the fully developed local Nusselt number and 
consequently the average Nusselt number, for a given 
annulus with U H F  boundaries, vary hyperbolically 
with Z. These conclusions are as expected since, as 
was previously mentioned, the assumption of hydro- 
dynamically fully developed flows implies also ther- 
mally fully developed free convection flows. 

FUNDAMENTAL SOLUTIONS OF THE FIRST 
KIND 

In this case, the two boundaries of the annulus are 
kept isothermal, one of which is at the inlet ambient 
fluid temperature to, while the opposite boundary is 
at a higher or a lower temperature. 

Equation (2) (with ~T/~z = 0) is readily solved to 
yield 

T =  AI InR+A2,  (32) 

where A~ and A 2 a r e  arbitrary constants. Substituting 
for T from equation (32) into equation (15), solve to 
yield 

U = BIIo(Da 1~2R)+ B2Ko(Da-1i2 R)+CI InR+C2 

where 

(33) 

AIDa A2Da 
Ci - C2 - 

16(1 - U )  4 16(1 - N )  4" 

The constants B~ and B2 are given in terms of the no 
slip conditions (3) as 

[ - C 2 K o ( D a -  I/2 N )  

+(C2 + Ct lnN)K0(Da- 12)] 
B~ = 

[lo(Da ';Z)Ko(Da '/2N) 

- Ko(Da-'/2)lo(Da '2N)] 

[C21o(Da t 2N) 

- (C2  +C, InN)Io(Da ~:2)] 
B 2 = 

[Io(Da-'/2)Ko(Da 1,'2N) 

-Ko(Da l"2)lo(Da tzN)] 

To obtain the constants A ~ and A2, the following ther- 
mal boundary conditions should be applied to equa- 
tion (32) : 

case/--temperature step at the inner wall, while the 
outer wall is kept at ambient temperature, i.e. 

T(N,Z) = 1 T(1,Z) = 0. 
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case O--temperature step at the outer wall while the 
inner wall is kept at ambient temperature, i.e. 

T(N,Z) = 0 T(1,Z) = 1. 

For problems of the first kind, the constants A, and 
A2 are given as : 

case I 

case 0 

1 
Ai - I n N  A 2 = 0 

- 1  
A~ = InN A 2 = 1. 

The volume flow rate F and the mixing cup tem- 
perature Tin, defined by equations (16) and (26), are 
readily calculated using solutions obtained for U and 
T. The results are as follows : 

F= 2IDaI~2BIRII(Da 1"2R) 

_ D a  1,2 B2 RKt (Da- 1/2 R) 

CI ~-CI R2 + C2 Rz l '  (34) R2(ln R ) -  ~ 2 /N + 

T m = ~ Da ~'2A, B, R(ln R) I, (Da- t/2 R) 

- DaA j BI Io(Da- R) 

- D a  I/2 A t B 2  R (ln R)KI (Da- 1/2 R )  

- DaA i Be Ko (Da- 1/2 R) 

+ ~ @ -  R2(ln2 R ) -  ~ @ -  R2(lnR) 

+ '4) 
+ Dal/2A2N1RI1 (Da-I/2R) 

1' - Da ~/2AzBzRK ~ (Da-'/ZR) (35) 
N" 

Expressions for the fully developed local Nusselt 
number is obtained after getting the temperature 
gradient at the walls from equation (32) and sub- 
stituting in equation (30). The results are : 

case 1 

case 0 

2(1 - N )  
N ~ / I  - -  NIn N 

2 ( l - N )  
Nuo - In N 

FUNDAMENTAL SOLUTIONS OF THE SECOND 
KIND 

In this case, one of the annulus boundaries is main- 
tained at a constant heat flux (q) and the opposite 
boundary is perfectiy insulated. The governing equa- 
tions in such a case are equations (8) and (10). Equa- 
tion (8) has the following solution in terms of the 
modified Bessel functions of zero order : 

U= C, Io(fl, R)+C2Ko(fltR) 

+C3Io(fl2R)+C4Ko(fl2R) (36) 

where 

i ,  = ,~/[0.5Da ' + 0 . 5 x / ( D a  2-424)] 

f12 = x/[0-5Da- '  -- 0.5~/(Da 2 _ 424)]. 

Substitution of U from equation (36) into equation 
(10) yields the following solution for the temperature 
profile : 

r = 16ct(1 - N)4(Z - 0.5L) + E, C, Io ( l ,  R) 

+ E, C2 Ko (Ell R) -[- E2 C3 Io (f12 R) 

+EzCaKo(flzR) (37) 

where 

E~ = 16(1-N)4(Da - '  - f l~)  

E 2 = 16(I--N)4(Da -' --fi2). 

The constants C~, C2, C3 and (7,4 are evaluated in 
terms of the no-slip conditions (3) and the following 
fundamental thermal boundary conditions : 

case/--step change in heat flux at the inner wall while 
the outer wall is adiabatic, i.e. 

1 
- 1 - - -N ~R]R =~ = 0  

case O--step change in heat flux at the outer wall 
while the inner wall is adiabatic, i.e. 

0T 1 8T 
(~R R=l I - - N  ~ R=N =0" 

In terms of the hydrodynamic and thermal boundary 
conditions, the following four equations in C~, C> C~ 
and C4 result : 

case I 

I lo(i ,N) Ko(fl~N) 

lo(fll) Ko( i , )  

d i l l  ( i ,N)  d2K~(i~N) 

d,I,(fl~) d2Kl ( i , )  

lo(fl~N) Ko(i~N) 
Io(fl~) K,,(fl2) 

d3Ii (fl2m) d4K, (i2N) 
d311 (f12) d4K, (f12) 

C2 = ?1 
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case O 

lo(~,N) 

to(~,) 

d l l l ( f l l N )  

d~ll( f l l )  

K,,(fl,N) lo(fl~N) 
Ko(fll) lo(f12) 

d2K,(fllN) d3ll(fl2N) 
dzK,(fl,) d3I,(f12) 

< 

where 

dl = f l lEi  d2 = - d l  d3 = f12E2 

Xo (fl ~ N) 

Ko(fl~) 
&K, (f12 N) 

&K, (f12) 

k i T ~ j  

d4 = - & .  

Each of the above two sets of equations can be solved 
by some standard procedure, such as Cramer's rule, 
to obtain the Cs in terms of fls (or 2). The value of 2 
can be determined by the following procedure. By 
definition, the dimensionless mixing cup temperature, 
in the present case, is given by the equation 

2 D w Z  
T,,1 - (38) 

P r ~ D F  

Equating the right-hand sides of equations (29) and 
(38), the following expression for 2 is obtained 

Dw 
)4 = ~Pr~ - . (39) 

8DE(1 - N) 4 

This expression reduce in case I to 

N 
/ ~ 4  = . (40) 

8F(1 - N )  5 

and in case 0 to 

1 
~ 4  - -  . (41) 

8F(I - N )  5 

The dimensionless volumetric flow rate is given in 
terms of equations (18) and (37) as 

F = [C, d, I, (fl,) + C2d2K, (/~l) 

q- C3 d3 I i (f12) + C4 d4 Ki (/J2) - -  NCI d111 (/~1 N) 

-- NC2d2Kt  (fl, N)  - NC3d31, (ft., N) 

- N C 4 d 4 K ~  (fl2N)]/[87Pre(1 - N)4]. (42) 

To obtain 2 and the values of C~, C2, C3 and C4 a 
simple iterative procedure may be used. An assumed 
initial value of 2 is used to obtain an initial set of 
values for Cs. These values are then used in equation 
(42) to obtain a value for F, and hence a second iterate 
for 2 may be obtained from equation (40) or (41). 
The procedure is repeated until  convergence within a 
specified tolerance is obtained. 

Having obtained the value of 2 (and hence c 0, equa- 
tion (29) [or equation (38)] can be used to obtain Tin. 

Finally, the following expressions for the fully 
developed local Nusselt number  are obtained after 

substituting the values of T,v from equation (37) in 
equation (31): 

case I 

2 
Nu~ = 

[16~( 1 - N)4 ( Z  - -  0.5L) + E, C~ I0 (fi, N) 

+ En C2Ko([~l N) 

+ Ee C3 I0 (f12 N) + E 2 C 4 Ko (f12 N)] 

case 0 

2 
N b l o  - -  

[16c~( 1 - N ) 4 ( Z - O . 5 L )  

+ E, C, Zo (fi,) + En C: K,, (1 s , ) 

+ E: C~ lo ([12) + E2 C 4 Ko (fi,)] 

FUNDAMENTAL SOLUTIONS OF THE THIRD 
KIND 

The two thermal boundaries associated with this 
fundamental  case are given as : 

case / - - tempera ture  step change at the inner walt 
while the outer wall is kept insulated, i.e. 

? T  
~ R ( 1 , Z )  = 0  T ( N , Z ) =  I 

case O--temperature  step at the outer wall while the 
inner wall is kept insulated, i.e. 

? T  
~ ( N , Z )  = 0  T(I,Z)= 1. 

The governing equations for this kind are similar to 
that of  the first kind. As a result, the temperature, 
velocity, volumetric flow rate and mixing cup tem- 
perature are given as in equations (32) (35), respec- 
tively, but with a new set of constants given for both 
cases I and O as 

A ) = 0  A ~ = I .  

It is worth mentioning that, since the wall opposite to 
the heat transfer surface is perfectly insulated, the fluid 
temperature in the annular  space becomes ultimately 
uniform at the same temperature as the heated surface 
(T = 1). Thus, in this case, an isothermal flow (at the 
temperature of the heat transfer boundary),  in which 
a balance is attained among the buoyancy, Darcian 
and viscous forces, is achieved. Also, since the tem- 
perature is uniform everywhere (T = 1), the mixing 
cup temperature described by equation (35) will give 
Tm = 1 with the new set of constants. Finally, and 
since the full development conditions yield an iso- 
thermal flow, the fully developed local Nusselt number 
is zero. 

FUNDAMENTAL SOLUTIONS OF THE FOURTH 
KIND 

In this case, since one of the boundaries is 
isothermal, the governing equations are similar to 
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those of the first and third kinds, but with different 
thermal boundary conditions given as : 

case /--step change in heat flux at the inner wall 
while the outer wall is isothermal at the inlet fluid 
temperature, i.e. 

~ = - 1 / ( l - N )  T(1,Z) = 0  
R = V 

case O--step change in heat flux at the outer wall 
while the inner wall is isothermal at the inlet fluid 
temperature, i.e. 

c3~ = I / ( 1 - N )  T ( N , Z ) =  O. 
R = I 

Expressions for the temperature, velocity, volumetric 
flow rate and mixing cup temperature are given as in 
equations (32)-(35), respectively, but with a new set 
of constants given for both cases I and O as : 

case 1 

cas~" 0 

- - N  
AI - 1 - N  A2 = 0  

1 - I n N  
A~ - A2 - 

1 - N  1 - - N "  

Expressions for the fully developed Nusselt number 
are obtained after getting the temperature gradient at 
the walls from equation (32) (but with the new sets of 

constants), and then substituting in equation (30). 
The results, for both cases I and O are given as 

N m  = N u o  = 2. 

FULLY DEVELOPED NATURAL CONVECTION IN 
AN OPEN-ENDED VERTICAL POROUS TUBE 

Fundamental solutions for fully developed natural 
convection in a vertical porous tube can be considered 
as a special case of that obtained for the annuli, but 
with N = 0. However, two fundamental cases are only 
possible in the case of tube. These are : 

fundamental solution of the second kind, case O 

~ = 0  ~ R  =1 
R = O  = 1  

fundamental solution of the third kind, case 0 

~T = 0  T ( I , Z ) = I .  
R = 0 

Solutions for the above two cases are obtained from 
that found for the annular geometry (cases O of the 
second and third kinds), but with N = 0. 

RESULTS 

To verify the validity of the analytical solutions 
obtained in the present work, these results are corn- 
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pared with the results of  a similar problem solved for 
non-porous domains [10]. The comparison is plotted 
in Fig. 2 for the axial velocity radial distribution of  
the first kind fundamental  solution. 

Also, a sample of  the results, showing both tem- 
perature and axial velocity distributions in the radial 
direction, is plotted in Figs. 3-6. This sample rep- 
resents fundamental  solutions for both first and fourth 
kinds and for both cases I and O. 

CONCLUSIONS 

Analytical solutions for fully developed upward 
(heating) or downward (cooling) natural convection 
velocity and temperature profiles in open-ended ver- 
tical concentric porous annuli have been obtained. 
These solutions correspond to four fundamental  
boundary conditions obtained by combining each of  
the two conditions of  having one boundary main- 
tained at U H F  or at U W T  with each of  the conditions 
that the opposite boundary is kept adiabatic or iso- 
thermal at the inlet fluid temperature. Expressions for 
the fully developed volumetric flow rate, mixing cup 
temperature and local Nusselt number  are presented 
for each considered case. Such fully developed values 
are approached, in a given annulus, when the height 
to gap width ratio (l/b) is sufficiently large. These 
values represent the limiting conditions and provide 
analytical checks on numerical solutions for transient 
developing flows. 

Once a developing natural convection flow reaches 
a state of  full development in a given annulus, the 
volumetric flow rate reaches its upper value ; any fur- 
ther increase in the annulus height would not produce 
an increase in the volumetric flow rate. Moreover ,  for 
cases with an isothermal boundary in a given annulus, 
the Nusselt number reaches its lower limiting value 
while the mixing cup temperature reaches its upper 
limiting value and all remain constant, irrespective of  
any further increase in the channel height. However,  

for cases with two U H F  boundary conditions, in a 
given annulus, the wall temperature (Tw) and the mix- 
ing cup temperature (Tin) continue their linear vari- 
ations with further increases in the channel height. 
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